首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3512篇
  免费   202篇
  国内免费   14篇
工业技术   3728篇
  2023年   26篇
  2022年   26篇
  2021年   88篇
  2020年   78篇
  2019年   70篇
  2018年   118篇
  2017年   103篇
  2016年   115篇
  2015年   99篇
  2014年   140篇
  2013年   225篇
  2012年   219篇
  2011年   273篇
  2010年   194篇
  2009年   225篇
  2008年   209篇
  2007年   187篇
  2006年   129篇
  2005年   101篇
  2004年   98篇
  2003年   95篇
  2002年   83篇
  2001年   39篇
  2000年   47篇
  1999年   55篇
  1998年   101篇
  1997年   78篇
  1996年   56篇
  1995年   28篇
  1994年   33篇
  1993年   28篇
  1992年   28篇
  1991年   21篇
  1990年   18篇
  1989年   18篇
  1988年   23篇
  1987年   15篇
  1986年   24篇
  1985年   21篇
  1984年   18篇
  1983年   12篇
  1982年   12篇
  1981年   10篇
  1980年   17篇
  1979年   14篇
  1977年   12篇
  1976年   22篇
  1974年   12篇
  1973年   10篇
  1972年   7篇
排序方式: 共有3728条查询结果,搜索用时 31 毫秒
41.
This work is a reinvestigation of the impact of blend morphology and thermal annealing on the electrical performance of regioregular‐P3HT:PC60BM bulk heterojunction organic solar cells. The morphological, structural, and electrical properties of the blend are experimentally investigated with atomic force microscopy, X‐ray diffraction, and time‐of‐flight measurements. Current–voltage characteristics of photodiode devices are measured in the dark and under illumination. Finally, the existence of exponential electronic band tails due to gap states is experimentally confirmed by measuring the device spectral response in the subband gap regime. This method reveals the existence of a large density of gap states, which is partially and systematically reduced by thermal annealing. When the band tails are properly accounted for in the drift and diffusion simulations, experimentally measured charge transport characteristics, under both dark and illuminated conditions and as a function of annealing time, can be satisfactorily reproduced. This work further confirms the critical impact of tails states on the performance of solar cells.  相似文献   
42.
43.
The research presented in this paper focuses on issues associated with the development of an experimental technique to estimate the dynamic characteristics of wheeled vehicles (namely, the frequency response function) using only in‐service response data. To validate the approach and eliminate complexities associated with multi‐wheel vehicles, a single‐wheeled prototype vehicle was designed and commissioned. The vertical vibration acceleration of the prototype vehicle's sprung mass was measured during normal operation. The power spectral density function was computed and used to estimate the frequency response function of the vehicle. A number of experiments using various configurations of the single‐wheeled prototype vehicle were undertaken, along with a series of vibration table experiments to provide a comparison with the estimated frequency response functions. The results show that the best estimate of the frequency response function using the vehicle response data provides reasonable agreement with the measured laboratory experiments when the value of the slope of the spectral function is not set to the value suggested by the International Organisation for Standardisation. Another technique was further developed to estimate the value of the pavement spectral slope using only in‐service response data; however, this technique does not yield consistent and accurate estimates. Interestingly, the main resonance of the vehicle is in agreement between the vibration table and response data around the sprung mass of all three vehicle configurations when inspected using linear scales (regardless of the variation in the spectral shape of the excitation), although the additional modes (including the unsprung mass) differs for all vehicles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
44.
Owing to their ability to efficiently deliver biological cargo and sense the intracellular milieu, vertical arrays of high aspect ratio nanostructures, known as nanoneedles, are being developed as minimally invasive tools for cell manipulation. However, little is known of the mechanisms of cargo transfer across the cell membrane‐nanoneedle interface. In particular, the contributions of membrane piercing, modulation of membrane permeability and endocytosis to cargo transfer remain largely unexplored. Here, combining state‐of‐the‐art electron and scanning ion conductance microscopy with molecular biology techniques, it is shown that porous silicon nanoneedle arrays concurrently stimulate independent endocytic pathways which contribute to enhanced biomolecule delivery into human mesenchymal stem cells. Electron microscopy of the cell membrane at nanoneedle sites shows an intact lipid bilayer, accompanied by an accumulation of clathrin‐coated pits and caveolae. Nanoneedles enhance the internalization of biomolecular markers of endocytosis, highlighting the concurrent activation of caveolae‐ and clathrin‐mediated endocytosis, alongside macropinocytosis. These events contribute to the nanoneedle‐mediated delivery (nanoinjection) of nucleic acids into human stem cells, which distribute across the cytosol and the endolysosomal system. This data extends the understanding of how nanoneedles modulate biological processes to mediate interaction with the intracellular space, providing indications for the rational design of improved cell‐manipulation technologies.  相似文献   
45.
A new kind of high electrical conductive epoxy coating with low filler rate was investigated for lightning strike protection (LSP) of carbon fiber reinforced polymer (CFRP). The coating without CFRP substrate was firstly studied. The influence of silver submicronic wires (AgSWs) with a high aspect ratio on the electrical behavior is observed; that is, the electrical resistivity evolution, the current density value, and the electrical conduction mechanisms as function of temperature. The preponderant electrical conduction mechanism is an Ohmic behavior. The higher level of conductivity obtained is 5.5 × 105 S m−1 for 9% vol of AgSWs. Lightning strike tests were carried out on an epoxy/AgSWs coating filled with 8% in volume (74 gsm) and deposited on a CFRP. The ultrasonic testing after lightning strike on coated CFRP shows no structural delamination and demonstrates the interest of this new route for an efficient LSP. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48700.  相似文献   
46.
ABSTRACT

Supply chains are becoming increasingly complex, and many companies and researchers are looking to nature for finding solutions. In this paper, we provide a narrative synthesis and systematic review to explore state-of-the-art, and identify key areas for exploration of nature inspired solutions in the supply chain area. We consider strategic, tactical, and operational decisions within supply chains and identify analogies between biological systems and supply chains to create a new research agenda. Our findings show that the majority of the research in nature inspired supply chains from the systemic perspective focuses on closed loop supply chains. In contrast, similar systemic solutions such as industrial symbiosis, circular economy, and industrial ecology have not been explored as frequently. Reducing production waste (industrial symbiosis) in addition to end-of-life product waste (closed loop supply chains), optimising raw material use and extending the life of used resources (circular economy), investigating the interactions between biosphere and technosphere (industrial ecology), and seeking solutions to industrial problems from nature (biomimicry) are all possible paths for reaching a zero-waste economy. These systemic solutions have a considerable impact on the supply chains at the strategic, tactical, and operational levels, which need to be explored to identify efficient and effective solutions.  相似文献   
47.
Computer simulation and optimal control requiring actual joint kinematics and based on the definition of a chain model become more used in biomechanics for studying the musculo-skeletal coordination or optimizing the performance. For this purpose, numerical optimization methods using a chain model have been developed and showed promising results to estimate joint kinematics for open-loop movements. The aim of this study was to exhaustively compare the type of method and closed-loop constraint with four criteria: (i) reconstruction quality, (ii) loop closure respect, (iii) regularity of joint kinematics, and (iv) computational time. Five algorithms were tested to estimate the whole body joint kinematics of 10 elite athletes paddling an ergometer: global optimization (GO) without closed-loop constraints, with soft closed-loop constraints and with strict closed-loop constraints, and Kalman filter (KF) without closed-loop constraints and with soft closed-loop constraints. Each athlete was modelled using a personalized 17-segment 42-degree of freedom chain model. Input data were measured by a 10-camera motion capture system sampled at 250 Hz. ANOVAs were performed on the four criteria to identify differences between the five algorithms. Marker residuals were slightly increased by about 2–3 mm using GO under strict constraints and KF with soft constraints. Closed-loop errors were five times reduced when introducing constraints (10 to 2 mm). KF algorithms gave significantly smoother joint kinematics than the three GO algorithms. Computational time was largely increased by introducing closed-loop constraints in GO algorithm (from 21 to 200 ms per frame) while it remained unchanged in KF algorithm (about 60 ms per frame). To conclude, KF with soft constraints represents the best compromise between the four criteria.  相似文献   
48.
49.
Ru complexes were successfully produced, and their structural properties were investigated using FTIR, Raman, and single crystal XRD patterns. The HOMO, LUMO, Eg, and electronic surface potential (ESP) values of the molecules were calculated by a Gaussian program. The complexes were used for producing hybrid capacitor cells as electrode materials. According to electrochemical analysis, complex 2 showed the best CV graph between ?1 V and +1 V and had the highest current value and hysteresis area when compared with the other complexes. The performance analysis and the capacity fade of the cells were investigated. The first capacity values of the complexes were 57.5, 22.1, 16.9, and 0.0021 F/g for complexes 1 , 2 , 3 , and 4 , respectively. The capacitive mechanism of the cells as relates to molecular interactions was also investigated. We suggested that the ESP values of the molecules were directly related to the capacitive performance of the cells. In addition to this, the best cycling performance was obtained for complex 2, which has the lowest Eg value among the complexes. We speculate that the charged regions on the complex materials have a crucial role in the increasing the capacitance of the cells.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号